Available online at www.sciencedirect.com

ScienceDirect polymer

ELSEVIER

Polymer 49 (2008) 1981—1992
www.elsevier.com/locate/polymer

Monte Carlo simulation of two interpenetrating polymer networks:
Structure, swelling, and mechanical properties

Samuel Edgecombe, Per Linse™

Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden

Received 17 December 2007; received in revised form 9 February 2008; accepted 11 February 2008
Available online 16 February 2008

Abstract

The swelling and mechanical properties of various interpenetrating polymer networks (IPNs) were studied. Six networks made from permu-
tations of a moderately crosslinked polyelectrolyte network (ref), a moderately crosslinked neutral polymer network (netl), and a highly cross-
linked polyelectrolyte network (net2) were first swollen in water and structural properties such as end-to-end chain lengths and radial distribution
functions were compared with the component networks’ equilibrium properties. The swelling of composite IPNs was discussed in terms of a bal-
ance between the osmotic pressure due to mobile counterions and the restoring force of the network chains, which act in parallel to counteract
the osmotic swelling. For the ref—net2 system, the strong stretching of net2 chains increases the network restoring force and the further swelling
due to the counterions is suppressed. The swollen networks were then uniaxially stretched, and equilibrium stress—strain plots were obtained up
to high extension ratios. The equilibrium volume decreased upon uniaxial extension, and the elastic moduli of IPNs of the A—A type were

slightly greater than that of their respective single networks.
© 2008 Elsevier Ltd. All rights reserved.

Keywords: Interpenetrating polymer networks; Static properties; Monte Carlo simulation

1. Introduction

Polyelectrolyte gels have received considerable interest in
recent years due to their exceptional swelling properties.
One problem with polyelectrolyte gels is that highly swollen
gels have relatively poor mechanical properties. One way
to overcome this problem is to make a gel composed of two
interpenetrating networks by crosslinking a polymer (or
polyelectrolyte) (Polymer II) into a pre-existing highly cross-
linked network of a polymer (or polyelectrolyte) (Polymer I)
of a different kind. Gong and coworkers have confirmed that
such interpenetrating networks have increased elastic and me-
chanical properties by measuring the stress—strain behavior of
a number of interpenetrating networks and comparing their
elastic moduli and breaking points [1—5]. Independently,
work by Myung et al. has also demonstrated the same
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phenomenon [6,7]. In Gong’s group, they have worked on in-
terpenetrating a network of one loosely crosslinked polymer
network, poly(acrylamide) (PAAm), into a highly crosslinked
charged network, poly(2-acrylamido-2-methylpropanesulfonic
acid) (PAMPS). Myung et al. have focused on interpenetrating
a network of one loosely crosslinked polyelectrolyte network,
poly(acrylic acid) (PAA), into a highly crosslinked neutral net-
work, poly(ethylene glycol) (PEG). Interpenetrating networks
are already being tested for use in applications such as carti-
lage [8] and cornea replacement [6,9], utilising their properties
of increased wear resistance and improved elastic moduli,
respectively.

When discussing the enhanced mechanical properties of the
gels, we can distinguish between (i) the increase in elastic mod-
ulus (increased stiffness) and (ii) the increased strain at which
networks physically break. The first observation has been
proposed due to the presence of a stiff Polymer I network, as
the initial gradients of the stress—strain curves for a single
PAMPS and an interpenetrating PAMPS—PA Am network over-
lap [1]. Observation (ii) is thought to be due to the increased
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effective fracture energy when the broken Polymer II network
chains entangle with the loose Polymer I chains [10].

Whereas experiments on interpenetrating networks are new,
but not uncommon, there is little theoretical work done on
such systems. Uniaxial extension simulations on single poly-
mer networks have been performed [11,12] and also on inter-
penetrating diamond networks at melt density [13]. More
recently one swollen poly(ethylene oxide)—poly(acrylic
acid) (PEO—PAA) interpenetrating network has been simu-
lated by Goddard and coworkers where mechanical and trans-
port properties were calculated [14]. Observation (i) was also
seen in their simulations and was attributed to the strong
stretching of the short PEO chains which were stretched as
compared to their corresponding single network.

In this contribution, we systematically study a range of sin-
gle polymer networks and double interpenetrating polymer
networks of the diamond type to examine the swelling, struc-
ture, and mechanical properties as a function of polymer
charge and crosslinking density of such networks. Our main
conclusion confirms observation (i) that the increased elastic
modulus appearing in double interpenetrating networks arises
mainly due to the strong stretching of Polymer I.

2. Model
2.1. General properties

A coarse-grained approach based on the primitive model of
electrolytes has been used to describe polyelectrolyte gels. We
have adopted basically the same model as in previous studies
of polyelectrolyte gels from our laboratory [15—18].

In the most general case, a system is composed of two inter-
penetrating positively charged networks and negatively
charged counterions dissolved in excess of water. A network
is composed of chains that are end-connected to tetrafunctional
crosslinkers (nodes). The chains consist of spheres (beads) that
are connected by springs. The topology of a single network is
diamond-like (see Fig. 1), and this topology is conserved
during the simulation. Beads and nodes will collectively be re-
ferred to as network particles. Network particles and counter-
ions are treated as charged Lennard-Jones (LJ) spheres. The
particles of a network carry the same charge zpeaq = Znode and
possess the same LJ diameter opeaq = Onode = 2 A. The number
of beads per chain is denoted by npe.q, and all chains are fully
flexible. There are n;,, counterions with diameter o;,, =2 10\,
compensating the net charge of the network. The solvent is
modeled as a homogeneous dielectric continuum. General
data of the model are collected in Table 1.

2.2. Potential energy

The potential energy U of a system can be expressed as
a sum of three energy terms according to

U - ULJ + Uelec + Ubond (1)

The LJ potential energy Uy is given by
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Fig. 1. Schematic illustration of one unit cell of a defect-free network of
diamond-like topology containing eight tetrafunctional nodes (spheres) linked
by non-crossing chains (wavy lines). Note that four of the eight subcubes
contain chains (shaded) whereas the other four are empty.

Table 1

General data of the model

Node diameter O node 24

Node charge Znode 0 and +1

Bead diameter Obead 24

Bead charge Zhead 0 and +1

Counterion diameter Tion 2A

Counterion charge Zion -1

No. of beads Npead 20 and 10
per chain

Temperature T 298 K

Relative permittivity [ 80

Uy = Zubj(r,/) (2)

i<j

where

i

uE(ry) = {46 [(l‘/a)lz—(r/a)6 +e ifr; <2V
’ O if I"U Z 21/60'

with ¢ denoting the LJ diameter of particle i (node, bead, or
counterion), € = 1kgT, and r; = r; — rj| the center-to-center
distance between two particles. Hence, we are using a LJ
potential truncated at Rcu1:21’6o and shifted by e to make
the potential continuous at R, resulting in a short-range
repulsive potential. The electrostatic potential energy Uk is
given according to

2
Zizje
Uelec = Z — (3)

= 4TteoE T

where z; is the valence of particle i, e the elementary charge,
€o the permittivity of vacuum, and ¢, the relative permittivity
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Table 2

Specification of networks

Network Znode Zpead Npead
ref +1 +1 20
netl 0 0 20
net2 +1 +1 10

of the solvent. The harmonic bond potential energy Upgng 1S
given by

(4)

where Nygng is the number of bonds in the network (node—
bead and bead—bead bonds), r,, the length of bond m,
ro=5A the unperturbed  equilibrium  distance, and
kvona = 0.4 N/m the bond force constant. When all interactions
are considered, the root-mean-square (rms) bead-to-bead
separation (R%)"/? ranges from 5.5 to 6.0 A.

2.3. Systems

We will examine nine different systems, three single net-
works and six having two interpenetrating networks. One of
the networks is referred to as the reference network (ref)
and is characterized by (i) monovalent node and bead charges,
Znode = Zbead = 11, and (ii) a chain length 7,0, = 20. As com-
pared to the reference network, the second network (netl) has
no charge, z,0d4e = Zpead = 0, and hence has no associated coun-
terions, and the third network (net2) has shorter chains,
Npead = 10 (see also Table 2). The six systems having two in-
terpenetrating networks were constructed by combining the
three different networks. These systems will be referred to
as A—B, where A and B is either ref, netl, or net2.

3. Simulation details

Monte Carlo simulations were performed using the NVT
(constant number of particles, constant volume, and constant
temperature) ensemble employing the Metropolis algorithm
[19]. The particles were enclosed in a cubic box of length L,
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and periodic boundary conditions were applied. The long-
range nature of the Coulomb interaction was handled by using
the Ewald summation with conducting boundary conditions.
Volumes and mechanical properties were determined by using
systems comprising one unit cell, whereas structural properties
were obtained from simulations with eight unit cells. One unit
cell contained N4 =8 nodes and N, = 16 chains per
network.

Single particles were subjected to trial translational displace-
ments ranging from 2.5 (network particles) to 10 A (counter-
ions). The displacements of network particles were small
enough to preserve the network topology. The equilibration
runs involved at least 10* passes (trial moves per particle) and
the production runs at least 10° passes. The uncertainty of ensem-
ble averages was estimated from 10 block averages. All simula-
tions were performed using the integrated molecular dynamics/
Monte Carlo/Brownian dynamics package MOLSIM [20].

The osmotic pressure of the gel was evaluated as the sum of
the ideal and a virial term [18]. If nothing else is stated, the
results are given at zero osmotic pressure corresponding to
the condition that the gel is in equilibrium with pure water.
The volume of the gel in equilibrium with pure water was
obtained from simulated pressure—volume isotherms at zero
osmotic pressure.

4. Results and discussion
4.1. Swelling

The swelling behavior as expressed by the volume per unit
cell of the nine different systems with either a single network
or two interpenetrating networks at equilibrium with pure
water will now be considered. Connected to this discussion
is also the fraction of counterions associated to the network,

o = nios/nion, where nis, denotes the number of counterions
within 7 A from at least one network particle.

Table 3 provides the equilibrium volumes of the different
systems. Regarding the single network systems, the equilib-
rium volume of the ref system is almost 40 times larger than
that of the netl system. It has theoretically and computation-
ally been shown that the presence of counterions inside the
gel provides a large osmotic pressure contribution, responsible

Table 3
Properties of the investigated systems
System VA3 x 10° o Polymer 1 Polymer 11

(R2)'"IA (Rey)'"*IA v (R2)'"1A (Rey) 1A v
ref 5786 + 50 0.53 71 5.9 0.84 — — —
netl 138+6 — 27 5.5 0.53 — — —
net2 718+8 0.66 33 5.8 0.78 — — -
ref—ref 5379 + 18 0.57 69 5.9 0.83 69 5.9 0.83
netl—netl 215+8 - 28 5.5 0.55 28 5.5 0.55
net2—net2 720 + 8 0.73 33 5.8 0.78 33 5.8 0.78
ref—netl 1769 + 21 0.34 49 5.7 0.72 50 5.6 0.74
ref—net2 1441 £ 8 0.70 46 5.7 0.71 41 6.0 0.87
netl—net2 485 +7 0.27 34 5.5 0.61 30 5.8 0.74

? Volume per unit cell at zero osmotic pressure. Error estimate a((RQl/ ) =02A.
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for the generally very large swelling of polyelectrolyte gels
[21,15,16]. The short-range repulsive LJ potential in the netl
system provides only a small contribution to the osmotic pres-
sure [15,16]. The equilibrium volume of the net2 system per
unit cell is smaller than the corresponding volume of the ref
system mainly due to shorter chains connecting the crosslinks.

The equilibrium volumes of the systems with two interpene-
trating networks are also given in Table 3. Of special interest is
a comparison of these volumes with the volumes of their parent
systems containing a single network. First, the equilibrium vol-
ume of the ref—ref system is 8% less than that of ref system. In
the ref—ref system there are twice the number of counterions
than in the ref system, which would intuitively provide twice
the osmotic pressure as compared to that of the ref system.
But the elastic properties of the two networks in the interpene-
trating network system are operating in parallel, and therefore
the system has an effective spring constant that is twice as large
as that of the single network. Consequently, the doubling of the
number of counterions should be balanced by the doubling of
the spring constant. However, we observe that the volume of
the ref—ref system is 8% smaller than that of ref system. This
could be rationalized by the increase of the fraction of counter-
ions that are associated to network chains from 53% for the ref
system to 57% for the ref—ref system. Therefore, the fraction of
counterions that contribute to the osmotic pressure in the ref—ref
system is smaller than that in ref system. That makes these coun-
terions osmotically less active; and hence, the volume of the in-
terpenetrating network system becomes smaller than that of the
corresponding single network system. The equilibrium volume
of the netl—netl system is larger than the volume of the netl
system. An increase of the number of particles increases the
short-range repulsion between network particles, and therefore
leads to an increased osmotic pressure. This is the dominating
swelling contribution in the netl and netl—netl systems where
the counterions are absent. The equilibrium volume of the net2—
net2 system is the same as that of the net2 system. As for the ref
network, the fraction of counterions associated to network
chains in the interpenetrating network system is larger as com-
pared to a system with only one network, leading to a relatively
smaller contribution to the osmotic pressure from the counter-
ions. However, due to the larger particle number density, an in-
crease of it leads to a more pronounced rise of the osmotic
pressure contribution from the excluded-volume interaction as
compared to the ref and ref—ref systems. Obviously, the change
in the counterion and hard-sphere contributions cancel each
other for the net2 network.

The ref—netl system swells much less than the ref system.
This can be rationalized by the presence of the second neutral
network, which doubles the strength of the gel without adding
additional counterions to the system. Also the equilibrium vol-
ume of the ref—net2 system is smaller than that of the ref sys-
tem but twice the volume of the net2 system. The number of
counterions is increased three times as compared to the net2
system; however, the short chains of the net2 network are al-
ready strongly stretched in a single network system, which
makes the swelling sublinear with respect to the number of
counterions. The swelling of the netl—net2 system is in

between that of the netl and net2 systems. As for the ref—
netl system, we attribute the reduction of the volume as com-
pared the system with the charged network only to the fact that
the uncharged network shares the strain but does not add any
counterions to the gel.

4.2. Structure

We shall now analyse the structure of selected systems with
a single network or two interpenetrating networks as described
by radial distribution functions (rdfs), chain end-to-end
distances, and Flory exponents. These results were obtained
from simulations with eight unit cells at zero osmotic pressure.

4.2.1. Radial distribution functions

The radial distribution function g(r) provides the particle
density at distance r from a given particle. It is conventionally
normalized to unit at large separation at which the spatial cor-
relations are lost, and it is zero at short separations when the
excluded-volume interaction operates. Fig. 2 provides the
rdfs for the ref system and the ref—ref system. Considering
the system with a single network, the node—node rdf shown
in Fig. 2a (dashed curve) reveals a maximum at 76 A and an-
other one with a shoulder at 125 A. For an ideal diamond-like
network composed of fused rings containing six nodes each,
maxima are expected to appear at v/3(a/4), V/8(a/4), and
V11(a/4) where a is the length of the unit cell (see Fig. 1).
With a box length L =359 Aand a = L/2, these distances be-
come 78, 127, and 149 A, respectively. Thus, first maximum
arises from the spatial correlation between topologically
neighboring nodes and the second one from topologically
next and next—next neighboring nodes. Therefore, at equilib-
rium with water the network is expanded, and the diamond-
like network structure is clearly visible in Fig. 3a.

The node—bead rdf given in Fig. 2b (dashed curve) possesses
a prominent maximum at 5.8 A, corresponding to the beads di-
rectly bounded to a node. The second maximum at 10.2 A cor-
responds to the second nearest bead in the chain. The rdf drops
below unity at intermediate distances, but then peaks again at
about 84 and 130 A owing to the increased bead density around
the nodes neighboring a node. The bead—bead rdf given in
Fig. 2c (dashed curve) shows prominent maxima at 5.8 and
9.8 A corresponding to the nearest and next-nearest neighbor-
ing beads, respectively. Also here a positive correlation appears
at larger distances related to the node—node correlations.

Fig. 2d (dashed curve) shows the node—counterion rdf. It
has a very prominent maximum at 2.2 A due to the electro-
static attraction between network nodes and oppositely
charged counterions. The rdf then quickly decays to a mini-
mum at 61 10\, which corresponds to the central void of the
six-membered ring. The maxima at 83 and 130 A correspond
to the accumulation of counterions around the nearest node
and the following nodes, respectively, in the six-membered
ring. The bead—counterion rdf given in Fig. 2e (dashed curve)
is similar to the node—counterion rdf, but the features are
somewhat smoothed out, consistent with a strong accumula-
tion of the counterions to the network particles.
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Fig. 2. (a) Node—node, (b) node—bead, (c) bead—bead, (d) node—counterion, (¢) bead—counterion, (f) counterion—counterion, (g) node;—node, and node;—bead,,
and (h) bead;—bead, radial distribution functions for the system with a single reference network (dashed curves) and with two interpenetrating reference networks
(solid curves) obtained from simulations at zero osmotic pressure using a system comprising of eight unit cells. In (b) and (c), the two curves are nearly

indistinguishable.

The counterion—counterion rdf given in Fig. 2f (dashed
curve) has a maximum at 4.6 A, which again is consistent
with that most of the counterions are closely associated to
the network. A minimum appears at about 68 A and a maxi-
mum at 130 A, again related to the spatial extension of the
six-membered ring and the counterions associated to it.

We will now consider the system with the two interpene-
trating networks. Panels a—c of Fig. 2 (solid curves) show

that the node—node, node—bead, and bead—bead rdfs for no-
des and beads residing in the same network are nearly identi-
cal than those of the corresponding single network system.
Nevertheless, a slight shift to shorter distances is seen due to
the smaller equilibrium volume of the ref—ref system as com-
pared to the ref system.

The node—counterion, bead—counterion, and counterion—
counterion rdfs shown in panels d—f (solid curves) of Fig. 2
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Fig. 3. Snapshots of polyelectrolyte gels at zero osmotic pressure: (a) a single
network (ref system) and (b) two interpenetrating networks (the ref—ref system).
Color coding: network particles (red and blue dots) and counterions (green dots).
Eight unit cells are displayed. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

have their first maximum at the same radial distance as com-
pared to the ref system. However, before the maxima at 130 A
an additional maximum at 80 A appears owing to the spatial
correlations between, e.g., a node residing in one network

and counterions associated to the other network. Hence, these
additional maxima are generally due to the interpenetration of
the two networks.

Panels g and h of Fig. 2 describe the rdfs for nodes and
beads residing on different networks. Generally, the onset of
these rdfs occurs first at 20—30 10%, showing that the two inter-
penetrating networks have no hard-sphere contact. Hence, the
electrostatic repulsion between the two networks suppresses
all molecular contact between them. The first maximum of
these rdfs appears at 70—80 A, equal to the radius of the
six-membered ring, supporting evidence that one network oc-
cupies the void created by the other network. This is illustrated
in Fig. 3b by an equilibrium configuration of two interpene-
trating networks.

4.2.2. Chain end-to-end distance

Distribution functions of chain end-to-end distances are
given in Fig. 4. Each of the panels a—c provides one distribu-
tion function for one of the three A—A type interpenetrating
networks (solid curves) and a corresponding distribution func-
tion of that chain in a single network (dashed curves). Each of
the other three panels provides the distribution functions of the
two types of chains of the three A—B type networks (solid
curves) and two corresponding distribution functions of those
chains in single networks (dashed curves).

Starting with the interpenetrating networks of A—A type, the
distribution functions of the end-to-end distance are similar in
the interpenetrating network systems and the corresponding sin-
gle network systems. Furthermore, the maxima of the distribu-
tion functions of the ref—ref, netl—netl, and net2—net2
systems are 69, 27, and 33 A respectively, which follow the
order of the equilibrium volumes discussed in Section 4.1. A
comparison of the distribution functions for chains in the inter-
penetrating network systems and single network systems shows
that the maximum of the distribution function of the chain end-
to-end distance is (i) shifted to slightly smaller value for the ref—
ref system (panel a), (ii) shifted to larger value for the net1 —net1
system (panel b), and (iii) the same for the net2—net2 system
(panel ¢) as compared to the corresponding single network sys-
tem. These shifts of the maxima follow qualitatively the varia-
tion of the equilibrium volume of the interpenetrating network
systems and the corresponding single chain systems are also dis-
cussed in Section 4.1.

The chain end-to-end distances for the interpenetrating net-
works of A—B type display a more complex behavior. Starting
with the ref—netl system given in panel d, the end-to-end ex-
tensions of the charged chains in the reference network and the
uncharged chains of the same length in the netl network are
virtually equal with a maximum at 50 A. Thus, their unequal
charge status is of no importance for their extension. This sup-
ports the notion that the intranetwork Coulomb repulsion is of
marginal importance to the osmotic pressure as compared to
the contribution from the counterions [16]. Obviously, the
chains in the reference network become less extended and
the chains in netl network are more extended as compared
to the end-to-end distances in the corresponding single
network systems.
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Fig. 4. Chain end-to-end distance distribution functions for the (a) ref—ref, (b) netl—netl, (c) net2—net2, (d) ref—netl, (e) ref—net2, and (f) netl—net2 interpene-
trating network systems (solid curves) and corresponding distribution functions in single network systems (dashed curves) from simulations at zero osmotic pres-
sure using systems comprising eight unit cells. In (c), the two curves are nearly indistinguishable.

Regarding the ref—net2 system shown in panel e, there is
also a tendency of the two networks to have a more equal
end-to-end distance as compared to the situation in the corre-
sponding single chain networks. In this situation the chains of
the two interpenetrating networks are both charged, but of dif-
ferent length. The distribution function of the shorter chains in
net2 network (i) is much narrower and (ii) displays a maximum
at somewhat shorter distance as compared to that for chains in
the reference network. Thus, here the shorter chains are much
more stretched. On the other hand, the extension of the longer
and charged chains becomes smaller as compared to the situ-
ation in the ref system.

The most complex behavior appears when networks of differ-
ing chain length and charge status are combined (netl—net2).
Panel f shows that the extension of these chains in the corre-
sponding single chain network is fairly close, maxima at 24 A
for the netl system containing uncharged and long chains and
33 A for the net2 system containing charged and shorter chains.
Furthermore, in the interpenetrating system the longer but more
relaxed and uncharged chains in the netl network become more
stretched and the shorter but more stretched and charged chains
of the net2 network become slightly less stretched. Hence, we

conclude that the uncharged and longer chains in the netl net-
work take up some of the strain in the interpenetrating network
system. Finally, we notice that the distributions of the end-to-
end distances in the ref—net2 and netl—net2 systems display
large similarities. The shorter charged chains in net2 network
are more stretched than the longer charged chains in the ref net-
work (panel e) or the longer uncharged chains in the net1 network
(panel ). Hence, the charge status of the longer chains is of minor
importance for the relative stretching of the two networks of an
interpenetrating system. However, the counterions associated
with the charged network give rise to an overall larger extension.
Thus, considerable differences of the chain extensions in inter-
penetrating networks of A—B type appear as compared to the cor-
responding single network systems. Generally, the enforcement
of the two networks to span the same volume leads to a leveling
of the extensions of the chains in the two networks. However,
differences in the extensions still remain, which are due to their
different chain lengths rather than a difference in charge status.

4.2.3. Flory scaling exponents
The stretching of the chains has been examined by extract-
ing the Flory scaling exponent » according to



1988
(R2)"*= (R3y)" (oesa = 1) (5)

In particular, » = 1/2 for Gaussian chains and 1 for rigid rods.

The Flory scaling exponents of the chains in the ref, netl,
and net2 single network systems are 0.84, 0.53, and 0.78, re-
spectively, confirming that chains in the ref and net2 systems
are strongly stretched, whereas the chains in netl system are
only weakly stretched by the excluded-volume interactions.
A further examination of the Flory scaling exponents for the
interpenetrating network systems confirms the conclusions
made in Section 4.2.2. The strongest stretching appears for
chains in net2 network in the ref—net2 system. Here, the addi-
tion of ref network to the net2 network increases the number
of counterions by a factor of three, but since the length of
the chains in ref network is twice that of the chains in the
net2 network, most of the strain in the interpenetrating net-
works appears in the net2 network.

4.3. Mechanical properties

We have exerted uniaxial extension on our nine model sys-
tems and determined their responses. The box length in the
z-direction was scaled according to L, = AL, where L is the
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length of the cubic box with the gel in equilibrium with
pure water and A the box extension ratio. At each A we per-
formed NVT simulations with varying L, and L, with L, =L,
to find the gel volume at which the osmotic pressure is zero.
The normal stress acting on the gel was evaluated according to

o= 0. (0t 1) 2 (©

where 0., (@ =x, y, z) are the diagonal components of the
stress tensor defined according to

N—1
1
Opa = E
i=1

N

a,ij fzx,[j (7)

<l

r
=it

with V = L,L,L. being the volume, r, ;; the & component of the
vector between particles 7/ and j, and f, ; the & component of
the force on particle i arising from its interaction with particle
J. The dependence of o,, and hence o1 on A arises both
through a variation of the forces and the cross-section areas.
The response of our simulated systems to strain has been
analyzed by considering the volume V and the normal stress
ot as a function of the uniaxial strain expressed through A.
These results are given in Figs. 5 and 6, respectively.

o

10% — —

10% [~ —

V/A3x10®

10’ t

o

ViIA3x10®

-
3

10% — —

V/A3x103

1 1
10 1 1.5 2

Fig. 5. Volume versus uniaxial extension ratio for the (a) ref—ref, (b) netl —netl, (c) net2—net2, (d) ref—netl, (e) ref—net2, and (f) netl —net2 interpenetrating network
systems (solid curves) and corresponding single network systems (dashed curves) from simulations at zero osmotic pressure using systems comprising one unit cell.
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Fig. 5 displays that the volume of the gel decreases upon
the uniaxial extension in all cases. As to the single network
systems (panels a—c of Fig. 5, dashed curves), the relative vol-
ume reduction is least for the uncharged polymer network
(netl) and largest for ref polyelectrolyte network. At the larg-
est strain studied the volume decreases by factors 128, 2, and
30 for the ref, netl, and net2 systems, respectively. For inter-
penetrating networks of A—A type (panels a—c of Fig. 5, solid
curves), the volume decrease upon strain follows qualitatively
the same trend as for their single network counterparts. How-
ever, the volume reduction is less pronounced for the polyelec-
trolyte networks, possibly due to an increased osmotic
pressure contribution from the counterions for these systems
which oppose deswelling. Systems of A—B type (panels d—f
of Fig. 5, solid curves) also show a pronounced volume desw-
elling as a function of strain, the effect being greatest for the
ref—net2 system, whose volume has reduced by a factor of
38 at the largest strain observed. The netl—net2 system with
fewest counterions and possessing the network with the largest
crosslinking density displays the smallest volume reduction
under the uniaxial extension.

We propose that the mechanism for the reduced volume
upon the uniaxial extension is the following. First, the

extension of the network in the z-direction creates an addi-
tional tension in the chains in the z-direction. With the topol-
ogy used, all chains are oriented in a diagonal direction; hence,
a reduction of the node—node extension in the x and y direc-
tions achieved by reducing L, and L, diminishes the increase
of the tension. If the chain end-to-end separation would be
conserved, geometrical arguments give that V' decreases at
increasing A and becomes zero at A = v/3. However, such a vol-
ume reduction increases the counterion confinement and the
excluded-volume repulsion, leading to a chain extension. Sec-
ond, the volume response upon uniaxial stress is dependent on
the network topology. For example, with a primitive-cubic lat-
tice topology and six-functional nodes, the coupling of the net-
work extension in the z-direction with those in the x- and
y-direction becomes only indirect through the non-bonded
interactions. In the present study with all chains oriented in
a diagonal direction, the coupling among the three directions,
and hence the volume reduction, is maximized. The volume
reduction was weaker for the uncharged polymer network
because their chains were not as strongly stretched as in the
polyelectrolyte networks. Finally, experimentally a volume de-
crease upon uniaxial compression of polyelectrolyte gels has
been observed [22,23]. We believe that the same underlying
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mechanism is at play at both compression and extension, albeit
the magnitude of the volume response generally differs.

In addition to a reduction of the gel volume, Fig. 6 shows that
the normal stress increases upon an uniaxial extension. The nor-
mal stress of the three systems with a single network at low
strains is not too dissimilar (panels a—c of Fig. 6), but at larger
strains the stress of the ref and net2 systems becomes much
larger than the stress of the netl system. Hence, the presence
of charges has a profound effect on the normal stress of these
gels at large strains under the present conditions. We suggest
that the much larger swelling of the polyelectrolyte gels before
the uniaxial extension with the concomitant more stretched
chains is the origin of the different stresses at large strains.

The normal stress of interpenetrating polyelectrolyte net-
works of A—A type (panels a and c of Fig. 6, solid curves) is
larger than that for the corresponding single networks at low
strain. We attribute this to the doubling of the network chain
density and the similar gel volume. However, at larger strain
the normal stress of these interpenetrating networks becomes
similar to that for the corresponding single networks. Here,
the larger transmitted force by the interpenetrating networks
is thus balanced by their larger volume (see Fig. 5) and hence
larger cross-section area. Considering the netl—netl and netl
systems at low strain, the similar normal stress is then consistent
with the twice as large volume of the net]l —net1 system as com-
pared to netl system. The twice as large normal stress of the
netl—netl system at large strain is then qualitatively under-
stood by the doubled network chain density and similar volume.

The stress—strain responses of the interpenetrating net-
works of A—B type display a rather complex behavior (panels
d—f of Fig. 6, solid curves). Regarding the ref—netl and netl—
net2 systems, the most characteristic feature is that at high
strains, the normal stress is that in between that of their com-
ponent single networks. Hence, a synthesis of an interpenetrat-
ing polyelectrolyte network of identical or higher crosslinking
density into an uncharged network leads to a toughening of the
original gel, which has been experimentally observed [7]. At
smaller strain, the stress of the netl—net2 system becomes
much larger than that of the ref—netl system, the reason is
most likely the higher crosslinking density of the net2 network
as compared to ref network. As to the ref—net2 system the
stress at large strain becomes close to that of its component
single networks. At small strain, the stress is similar to that
of the net2 network, which is larger than that of ref network;
here, the network with the larger crosslinking density domi-
nates the stress response.

So far, we have considered gels in equilibrium with pure
water. The stress—strain response upon uniaxial extension at
constant gel volume will now briefly be examined. Fig. 7
shows the normal stress for the ref and netl single networks
at zero osmotic pressure and at constant volume upon uniaxial
extension. For the polyelectrolyte gel, the stress increase upon
extension becomes smaller at constant volume; the effect in-
creases at increasing strain. At the largest strain, the normal
stress is reduced by the factor of 100. Since the volume and
hence the xy-cross-section area differs by about 1/100, we con-
clude that difference in normal stress at the two different

a T T T

10% —

1 0-2 | | | | |

A

Fig. 7. Normal stress versus uniaxial extension ratio for the (a) ref and (b) netl
single network systems from simulations at zero osmotic pressure (solid
curves) and at fixed volume (V=V(A=1)) (dotted curves) using systems
comprising one unit cell.

volume conditions is mainly attributed to the different cross-
section areas and less to a variation of the forces per unit
cell. As to the uncharged gel, the dependence of the stress on
the volume condition is much less. Here, the volume change
at constant osmotic pressure was much smaller. Thus, large dif-
ference in the normal stress between polyelectrolyte and poly-
mer gels appearing at constant osmotic pressure is strongly
reduced if the uniaxial extension is made at constant volume.

We will now briefly compare the mechanical properties of
some of the gels with a theory for non-Gaussian chains appli-
cable for strongly stretched rubber [24] and highly swollen
polyelectrolyte gels [25]. The non-Gaussian theory by Treloar
is here modified to include (i) two interpenetrating networks
(simple sum of the contributions from each network), (ii)
a strain-dependent gel volume taken from our simulations,
and (iii) a Flory exponent taken from our simulations (Treloar
used v = 1/2 in his theory). With these modifications, we have

o 1 kT e
Ellj 1’}’( 2 3V ZNCham Inbead X [‘C I(Anbea(;,i)
- ﬁ”ﬁ* O] (8)

where Ncpain; and npe,q; are the number of crosslinked
chains and the number of beads in a chain, respectively, for
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network type i, V(A) the gel volume at the strain A, v;
the Flory parameter for chains of network type i at
A=1, and L£7'(x) is the inverse Langevin function
(L7 (x)=3x 4 (9/5)x° + (297/175)x° + (1539/875)x7).

Fig. 8 shows the prediction of Eq. (8) (curves) with values
of V(Q), v, and nypeaq taken from Table 3 and Fig. 5 and the
simulated results (symbols) for the ref, net2, and ref—net2
systems. A good agreement between the non-Gaussian theory
and our simulated results is found for all three systems. For the
interpenetrating the ref—net2 system, the theory predicts that
the contribution from the chains of the net2 network is =10
times larger than that from the chains of ref network. This dif-
ference originates primarily from the stronger stretching of the
shorter chains of the net2 network. At A=1, we had v =0.84

and »=0.71 for the two types of chains, respectively, see
Table 3.

5. Conclusions

We have studied three single network systems and six inter-
penetrating network systems using Monte Carlo simulations
and investigated their volume, chain properties, and mechani-
cal properties when the gel is in equilibrium with pure water.
The main conclusions of this work are as follows:

(A) (i) Interpenetrating polyelectrolyte networks of identical
crosslinking density swell slightly less than the corre-
sponding single network system. To the first order, the ef-
fect of chain and counterions per unit cell cancels each
other. (ii) Interpenetrating uncharged polymer networks
of identical crosslinking density swell more than the cor-
responding single network system. The doubling of the
number of particles per unit cell gives rise to a larger ex-
cluded-volume repulsion. (iii) The swelling of interpene-
trating network systems that contain both polyelectrolyte
and polymer networks of different crosslinking density is
insensitive which of the networks that carries the charges.

(B) When networks of low and high crosslinking densities are
mixed, the shorter polymer chains become more stretched
than the corresponding single network system and the
longer polymer chains become less stretched than its
corresponding single network system.

(C) The structure of the interpenetrating polyelectrolyte net-
works shows that network particles mutually repel each
other and there is no molecular contact.

(D) Upon uniaxially stretching of a swollen polyelectrolyte
network, the equilibrium volume decreases. The stretch-
ing of chains in the direction of extension is partly com-
pensated by a reduction of the extension in the other
two directions. The volume response is expected to be
dependent on the network topology.

(E) At large strain, the charged single networks displayed
a larger normal stress as compared to the uncharged
network.
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